Зачем нужно масштабирование признаков? Как бы вы его провели?
Допустим, у нас есть линейная регрессия с двумя независимыми переменными, у которых совершенно разный масштаб. Например, значения одного признака находятся в диапазоне от 0 до 100, а второго — от 0 до 1. Чтобы подстроиться под такие признаки, модель подберёт коэффициенты так, что первый будет небольшим, а второй — большим.
Проблема тут возникает на этапе обучения. Дело в том, что скорость оптимизации таких коэффициентов не будет одинаковой: ведь при градиентном спуске мы найдём две частные производные и подберём единый для обеих производных коэффициент скорости обучения. В результате, на каждой итерации мы будем получать различающиеся значения градиента для разных направлений.
Есть несколько способов масштабирования: ▫️Нормализация. В данном случае все значения будут находиться в диапазоне от 0 до 1. ▫️Стандартизация. Масштабирует значения с учётом стандартного отклонения.
Для нормализации, например, можно использовать метод MinMaxScaler из scikit-learn. Для стандартизации в этой же библиотеке есть метод StandardScaler.
Зачем нужно масштабирование признаков? Как бы вы его провели?
Допустим, у нас есть линейная регрессия с двумя независимыми переменными, у которых совершенно разный масштаб. Например, значения одного признака находятся в диапазоне от 0 до 100, а второго — от 0 до 1. Чтобы подстроиться под такие признаки, модель подберёт коэффициенты так, что первый будет небольшим, а второй — большим.
Проблема тут возникает на этапе обучения. Дело в том, что скорость оптимизации таких коэффициентов не будет одинаковой: ведь при градиентном спуске мы найдём две частные производные и подберём единый для обеих производных коэффициент скорости обучения. В результате, на каждой итерации мы будем получать различающиеся значения градиента для разных направлений.
Есть несколько способов масштабирования: ▫️Нормализация. В данном случае все значения будут находиться в диапазоне от 0 до 1. ▫️Стандартизация. Масштабирует значения с учётом стандартного отклонения.
Для нормализации, например, можно использовать метод MinMaxScaler из scikit-learn. Для стандартизации в этой же библиотеке есть метод StandardScaler.
#машинное_обучение
BY Библиотека собеса по Data Science | вопросы с собеседований
Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283
Tata Power whose core business is to generate, transmit and distribute electricity has made no money to investors in the last one decade. That is a big blunder considering it is one of the largest power generation companies in the country. One of the reasons is the company's huge debt levels which stood at ₹43,559 crore at the end of March 2021 compared to the company’s market capitalisation of ₹44,447 crore.
Among the actives, Ascendas REIT sank 0.64 percent, while CapitaLand Integrated Commercial Trust plummeted 1.42 percent, City Developments plunged 1.12 percent, Dairy Farm International tumbled 0.86 percent, DBS Group skidded 0.68 percent, Genting Singapore retreated 0.67 percent, Hongkong Land climbed 1.30 percent, Mapletree Commercial Trust lost 0.47 percent, Mapletree Logistics Trust tanked 0.95 percent, Oversea-Chinese Banking Corporation dropped 0.61 percent, SATS rose 0.24 percent, SembCorp Industries shed 0.54 percent, Singapore Airlines surrendered 0.79 percent, Singapore Exchange slid 0.30 percent, Singapore Press Holdings declined 1.03 percent, Singapore Technologies Engineering dipped 0.26 percent, SingTel advanced 0.81 percent, United Overseas Bank fell 0.39 percent, Wilmar International eased 0.24 percent, Yangzijiang Shipbuilding jumped 1.42 percent and Keppel Corp, Thai Beverage, CapitaLand and Comfort DelGro were unchanged.
Библиотека собеса по Data Science | вопросы с собеседований from it